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SUMMARY 

Some specific comparisons are made in this note between the use 

of the asymptotic Chi-square distribution of the likelihood ratio and 

the asymptotic normality of the maximum likelihood estimates to obtain 

confidence interval for reliabilities of arbitrary systems when only 

failure data on the components is known. In all the comparisons made, 

using moderate samples and systems of average complexity, the asymptotic 

Chi-square appears to give much more accurate confidence intervals. Al- 

though the asymptotic Chi-square method requires machine computation for 

all but the simplest systems while the asymptotic normal method can be 

done easily by desk calculater, these examples would indicate the Chi- 

square method would be superior in most practical instances. 



1.     INTRODUCTION 

In a recent publication  [2], Madansky has shown how to use  the 

asymptotic distribution of the logarithm of the likelihood ratio to 

obtain approximate confidence intervals  for series,  parallel and series- 

parallel systems.     That this method could be extended to the class of 

systems which are monotone was shown by Saunders and Myhre   [6].     In 

this study we make  some comparisons between this likelihood  ratio method 

and the only other method presently known which can be used  to obtain 

approximate confidence limits for the reliability of an arbitrary system. 

This alternate method was proposed by Rosenblatt in   [5]  as a special case 

of the U-statistic which was discussed in that paper.    But  this method 

also depends upon the asymptotic distribution of the statistic used and 

hence is also approximate in the same sense  for finite sample size. 

We can help to answer the question of which approximation is best 

by finding a situation in which exact confidence intervals can be  found 

by other means and  then making a comparison between the two.    We also 

might ask which statistic has its distribution,  for certain moderate sample 

sizes likely to arise in practice,  closer to its asymptotic distribution. 

We do both of these  things believing that  these answers,  fo^finite sam- 

ples, help resolve,  much more effectively,   the question of which method is 

better than the answer to the question of which test,  the inversion of which 

gives the approximate confidence interval,  has the highest asymptotic relative 

efficiency. 
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Let y . a Bernoulli random variable, be the indicator of performance 

for the i  component among m.  The state of the components then is the 

vector y ■ (y.,...,y ). By a monotone structure we follow [1] to mean 
J-    m 

there exists a non-decreasing Boolean function $    of the state of the com- 

ponents, <J)(y), which is the indicator of the state of the structure. If 

Ey. - p, for i » 1 ra is the reliability of the i  component, then 

the components reliability is the vector p = (p1 p ) and E<Ky) = h(p) 

is the reliability of the structure. 

Our data consists of the vectors x = (x.,,...^ ) and n = (n, ,...,n ) 
m m 

th 
where we have observed    x.     successes in    n      trials of the  i      component. 

The number of successes    x.    has a binomial distribution. 

2.     THE LIKELIHOOD RATIO METHOD 

Let us  summarize the likelihood  ratio  (LR)  method presented in  [6]. 

Let a monotone system reliability function    h    of order    m    and data    (x,n) 

be given.     Now we define a function    A    from the m-dimensional unit hyper- 

cube into the same space for each given real    6    by the equation for its 

j      coordinate 

(2.1) 
x.-6p 6 h(p) 

jvtM n^-SpjSjhCp) 
j  = 1,...,m. 

where    6 h(p)     represents the partial ^derivative of    h    with respect to 

th 
the j  coordinate. 

For given p  in the domain of A we set 

pi(6) = H?       (?>),&) 1    J.|Zy*«t9  » 
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Call the limit which exists p*(6), which is a fixed point of A. 

Then one computes hp*(6) where we make here and throughout the conven- 

tion that juxtaposition of functions denofes composition. 

Now let the maximum likelihood estimate of component reliability be 

given by p -  x./n.  for 1 ■ l,...,m and set 

m 

(2.2)       N(p) = 2. VM" Pi + (l-p^^nd-p.)]. 
1»1 

Then we also must compute -A(6)  where 

(2.3) A(6) = Np*(6) - N(p). 

A confidence Interval of level y    can be obtained from the set 

(2.4) AY - {6: -A(6) < ^X^d)}. 

where    Xi     (D     is the y      quantlle of the Chi-square with one degree of 

freedom distribution, by taking 

(2.5) {hp*(6):  6 e  A  }. 

That this method gives an approximate  confidence interval is  the substance 

of [6]. 

A program which performs these calculations automatically and which 

requires only the lnpu':s 

1 the reliability function   h 

2 the data on component performance    (x,n) 

3 the desired confidence level   y i 

■ 
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to obtain the boundary points of the interval given in (2.4) is available 

by request from the authors. 

To make the ideas clear we illustrate with a simple example.  Let us 

consider the "2 out of 3" quorum structure reliability function 

h(p) - P3[l - d-p^d-p,,)] + (l-p^p,. 

If 

(2.6)   x1 = 7, x2 - 8,  x3 « 9 and ni = "o = n3 = 10 

then h(p) » .902. 

We give in Figure 1 the graphs of hp(6)  and -A(6) as functions of 6, 

- —.98 

__.— -.90 

—.RO 

\-.72 

The abcissa contains values of 6.  On the left ordinate 
2 

are plotted values of Y such that  x  (1) ■ -2A(6) 

and on the right ordinrte are the values of hp(6). 
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The data summarized in this graph was obtained by a program (which is 

also available by request from the authors). This program is the basis 

of the one mentioned previously and uses only the inputs h and data 

(xtn)  in the following manner: Take a sequence of values, say, 6, = i 

for i ■ 0, ±1, ±2,... over a sufficiently large range, here taken as 

i - -100,...,20. Beginning with 6-0, p*(0) ■ p, we solve for p*(6 ) 

by using as the initial estimate the solution of the previous iteration. 

Let p (5..,) - p*((S.)  and have the computer obtain the iterates 

p (6 ..) ■+ p*(6, .). We can then compute hp*(6 ), -A(6 ) at each value 

of i.  For a given 6 we plot the values of hp*(6)  on the right Ordi- 

nate and the Chi-square value corresponding to -A(6)  on the left ordinate. 

To obtain a confidence interval we follow the analogous procedure for 

the function which we now give for the graphs. We select a value of the 

confidence level y    on the left ordinate, then we find the two values of 

6 on the abscissa for which -A(6) assumes that value. We then read the 

two corresponding values of hp(6) on the right ordinate and these values 

are the confidence intervals. 

We see by examining (2.1) at the unique fixed point p*(6) of A(*,<5), 

which is the function of the sample data (x,n), that this point satisfies 

for any positive integer w the equation 

(2.7) p*(<S: cox,wn) ■ p*(6/u): x,n). 

Accordingly, from (2.2) we have 

N(p: ujx.cjn) ■ u)N(p: x,n). 
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Hence from (2.3) it follows that 

(2.8) A(ö: cox.wn) » U)A(6/Cü: x,n). 

These two relations make possible an Instructive comparison of the de- 

creasing length of the confidence interval with increasing sample size. 

If we take the same data as given in (2.6) and set w = 10 and use 

the relation (2.7), (2.8), we have Figure 2 as the graphical solution. 
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Figure 2 

-100 100 

The abclssa contains values of 6.  On the left ordinate 
2 

are plotted values of y svch.  that  x-i  (1) * -2A(6) 

and on the right ordinate are the values of hp(6). 
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If we take to • 100, we obtain Figure 3. 

.99999 

.999 

-400   -200 

Figure 3 

The abcissa contains values of 6.  On the left ordinate 
2 

are plotted values of y such that X .  (1) » -2A(6) 

and on the right ordinate are the values of hp(6). 

Let us now consider a more realistic case where we have a "fail 

safe" reliability system (an m-1 out of m quorum structure), letting 

q ■ ^"PJ we write 

(2.9) 

m     m        m   r    m q. -i 

(P) - HPi + I q. TTPi - nPi [i + 2 r1 • 
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Consider the data for m - 10, r^ -••.■ r^ « 100 

(2.10) 

x1  - 87,  x2 - 86,  x3 - 82,  x4 - 89,  x5 = 98 

x6 - 95,  x7 - 97,  x8 - 96,  x9 - 91,  x10- 96, 

Now h(p) ■ .803.  Using the iteration method just described we obtain 

for   6 - -500,(15),100    the values of hp(6) and -A(6) given in 

Figure 4.  In particular, for y *  .95   we have the interval (.72,.88) 

for the true reliability h(-n) . 
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The abcissa contains values of 6. On the left ordinate 
2 

are plotted values of y such that Xi_ (1) = -2A(6) 

and on the right ordinate are the values of hp(6). 
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3.  THE MAXIMUM LIKELIHOOD METHOD 

If y^Cj) for j = l,...,n  are the Bernoullian random variables 

which represent the data on the behavior of the 1  component then In 

terms of our previous notation x = y.(1) +•••+ y^Cn,) is the total 

li number of successes for the    n,     trials of the 1      component.    In  [5] 

it  is noted that 

n, n 
i ^    jjyjU) ym(j)] 

1-1 j-l TTn, 

Now an alternate method of obtaining approximate confidence intervals 

can be based on either the well known asymptotic normality of maximum like- 

lihood estimates or equivalently in this case the asymptotic normality of 

U-statistics. This method was called "linearization" by Madansky in the 

coirparisons which he made in his paper loc. cit. 

We now state the appropriate 

THEOREM: If   p    is the maximum likelihood estimator of the true 

aomponent reliability vector    TTJ then   h(p)    is asymptotioally normal 

with mean    hfn)    and variance 

m 

o2 =   A   h .h(v)]2var(p.) 
3=1 

Proof: See Rao [p.207, 4]. 

Using this result, approximate confidence limits of level y for 

h(TT)  can be obtained from h(p) ± z,, wo'ö where z  is the y  percen- 

tile of the standard normal distribution.  For the structure given in (2.9) one 
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calculates 

j        i^j   \i7j pi/ 
j«!,...,m. 

So 

*2'U^t(n](± i-i -   j-iwj pi/\njpj, 

Calculation with a desk computer for the data in (210) using (3.1) with 

m » 10 yields 

h(p) = .803    a2  = .001047. 

By choosing z .-_ ■ 1.960 the 95% confidence interval becomes (.740,.866) 

which is noticeably different from the one obtained previously. The latter 

interval is shorter on each side by about  .02. 

To make another comparison, take the data given in (2.6) and we cal- 

culate by desk computer using (3.1) with m = 3,  h(p) = .902,  6 = /.004A9. 

Now we take y *  .90    and the confidence interval becomes  (.79,1.01) which 

can be compared to the interval (.74,.97)  generated by the likelihood ratio 

method. Again the intervals differ significantly. 

As before we ask what happens to the ML confidence interval for the 

data (ü)x,(jjn) and we notice that h(p) remains unchanged but, by (3.1) 

that  d(ü)X,a)n) ■ o(x,n)//u) , 

Using the data (2.6) in the 2 out 3 system and the numerical results 

of which graph 1 is a summary we obtain for a 90% confidence interval 
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LR ML 

(.74,.97) (.79,1.01) 

(.862,.932) (.867,.937) 

CO = 1 

co = 10 

Of course, the above calculations show the comparative simplicity of the 

ML method and it also shows that in cases when sample sizes are of the 

order of 100 observations for each component, (impractically high in most 

situtations), and the reliability estimates not too close to one, that both 

the ML and LR methods will yield essentially the same confidence intervals 

fov simple enough structures. 

As the structure becomes more complex, however, the number of obser- 

vations for each component must increase to obtain the same limits by the 

two methods as we saw with the structure (2.9). 

To see how this works consider the series system h(p) = |fp,.  Since 
1 1 

p - x /n , if n = nn and ^ • = ^A tor    i«l,...,m then for n = 5 

and m = 10, by the rapidity of convergence in the central limit theorem 

when the summands are identically distributed, the distribution of h(p) 

is very close to log-normality. To make the distribution close to normal, 

we have to take n- at least 100.  While if m = 2, then nn = 25 may 

be enough to have h(p)  close to normality.  If m = 25, no sample size 

nn of practically attainable magnitude might be large enough to do the trick. 

A weakness of the ML method is that the confidence limits are always 

symmetric about the estimate of the reliability and when this estimate is 

near one and the sample sizes moderate, both of which occur frequently in 
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practice, It may give intervals in which the upper limit exceeds one. 

Of course this objection is partially vitiated in case interest is con- 

fined to lower confidence intervals. 

A.  COMPARISON WITH EXACT CONFIDENCE INTERVALS 

Acrually comparisons between the actual confidence Intervals given 

by the ML and LR methods are not too meaningful when they do not agree 

sinca in general there is not a unique exact confidence interval to which 

they can be compared. However, there do exist special cases for which we 

can obtain exact confidence intervals. 

If all component reliabilities were known to be equal in a k out 

of m quorum structure, the system reliability would be [p.20, Ref. 1], 

(here letting p, be the common value of the vector (p ,...,p )  and 

disregarding our previous notation that h map the unit hypercube into 

the unit interval) 

m 

«.I) h(Pl). loi-r1- 

Using the notation for the incomplete beta function found in the tabulation 

by Karl Pearson [3] 

0 

we have 

(4.2) h(p1) = Kp^k.m-k+l) 
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I: The exact method. 

If we denote p « x^n.,  then we obtain a 100Y% upper limit 

p, as the solution for the real variable p  such that 

Xl 

j-o 

ni j nrj 
j p1q   • .  .v^,^,.,^ ^.^ - 2 2 I  Piq 1 J- 1 - Kp^x^l.n.-x.+l) »^^ 

and a lower limit j^  as the solution for the real variable p  such 

that 
n 
1      . n.-j , 

n,  j 1   T . -. \  1-Y Plql  = I^P1:x1,n1-x1+l) = -^ z;1 
j-x 

which can be solved using Pearson's  tables  loc.cit.    So we have with 

confidence    y 

£1   <  ^T   < P 1      "1      VV 

and hence 

hC^) < h(TT1) < hC^) 

is an exact confidence interval of level y  for the true system reliability. 

Assuming TT = (TT ,...,7T )  for the structure given in (4.1), and that 

x1 = 23, n = 25 and interpolating linearly in Pearson's tables loc. cit, 

we obtain the 95% confidence limits for IT : 

p1 = .976   2.1 = »740 

Fixing m = 10, and transforming this interval by the function defined 

in (4.2) we have exact upper and lower tolerance limits as given in I 

table 1, (page 15). 
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II.  The ML Method 

By the theorem we have for a k out of m structure with p ■ (p ,...,p ) 

that 

o, " k 
k 

/nu k-1 m-k /Plql 
(k)pi qi  ^^ 

and substituting p ■ xi/ni  for Pi we obtain an approximate 100Y% con- 

fidence Interval of the form 

K^: k,m-k+l) ± 6k • Z(1_Y)/2. 

Using n ■ 25, x. - 23, m - 10 and y * .95 with the fact that 

o, .«/o. « (m-k)p1/kq we obtain the following 95% confidence intervals for 

MO  as given in II table 1, (page 15) 

III.  The LR Method 

In this one dimensional case the LR method yields a simple procedure 

for obtaining an approximate confidence interval for hCTT..)  of level y. 

Now the transformation A is from the unit interval into the unit interval 

and thus 

NCP]^ = xi  ln Vi  + (i^-x^ InCl-p^ 

so that instead of using the parameter  6 we can as well use p*(6). We 

then have 

AY = (p^ NC^) - 4X^(1) 1  NCp^} 

and the confidence interval becomes 
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{h(p ): p c A }. 
1    1    Y 

Using the data n = 25, x. = 23,  m = 10, y ■ -95 we have 

A = (.773, .986) 

Again by transforming this interval by the function hCp.)  as defined 

in (4.2) we obtain the LR confidence intervals as given in III Table 1. 

TABLE I 

Exact ML LR 

k I II III 

10 (.049,.787) (- 070, .938) (.076,.871) 

9 (.221,.977) (.418, 1.21) ',.2997,.9912) 

8 (.495,.9984) (.823, 1.097) (.595,.9996) 

7 (.7511,.99993) (.9664, 1.022) (.8266,.99994) 

Comparison of 95% confidence intervals for k out of 10 quorum 

systems with identical component reliabilities. 
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Of course no one in his right mind would use such a procedure as 

II or III in this case but in real situations these conditions might 

be approximated. 

This evidence would lead one to suspect that for all structures 

in which the true reliabilities are nearly the same and near one, and 

the number of observations for each component small but the structure 

not simple (in short, those cases which are usually encountered in 

practice) that the LR method would yield results which are superior. 

■ 
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We now make some comparisons with a few selected cases in the 

tables of exact confidence limits for systems which are available. 

These are for series systems of order two and three with the same 

numbers of observations taken for each component. 

We shall use the tables of Lipow and Riley [2] which we shall 

denote by RL.  These tables provide directly upper bounds on the 

unreliability but by taking the entries and subtracting for one 

unity we obtain lower bounds on the reliability which we use for our 

comparisons. 

Based on the LR method, utilizing our previous notation, a lower 

confidence bound on the true reliability of level (1 + Y)/2 is 

hp(6 ) where 6 = sup A > 0.  (The true confidence level used for 
Y Y       Y 

the comparisons of one sided confidence bounds in [3] for the LR 

method was not correct. The three upper limits were compared for 

n, «= n„ « 100 when the number of failures was 3 and 5 respectively. 

At a 90% confidence level the upper limits are 

Buehler's value   = .00412 
LR = .00349    (not .00518 as given) 
ML = .00164 

the .00518 value corresponds to a 97.5% confidence level.) Similarly 

a lower confidence bound on the true reliability of level Y is 

h(p) + z,  -S when based on the ML method.  Again here  z  is the r    1-Y Y 

Y  percentile of the standard normal distribution. 

Selecting typical entries which might arise In practice from 

volume I of reference [2] we have the comparisons of table II. 
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h(p) - TT p.      n< " xi 
1-1 

ML 

TABLE 11 

■yi i ni- 
ao for i 

Confidence Level 

.90 .95 

LR RL ML LR 

X y   •   •   •       K 

RL 

1 1 .655 .629 .607 .611 .571 .548 
o 1 2 .545 .529 .497 .495 .473 .443 

II 2 2 .456 .451 .445 .405 .397 .392 
O 1 4 .347 .350 .344 .292 .301 .298 

2 3 .373 .375 .364 .320 .326 .304 

1. 2 .756 .739 .716 .728 .700 .677 
o 2, 2 .701 .687 .683 .670 .647 .643 
CM 

II 1, 3 .697 .683 .660 .665 .643 .620 
o 

d 2. 3 .647 .636 .622 .614 .597 .582 
3, 3 .599 .591 .585 .565 .551 .544 

k » 3 yr y2. y3 

1 . 1 . 1 .760 .743 .747 .732 .705 .709 
o 1 . 1  , 2 .704 .690 .693 .673 .651 .644 
CM 

1 . 2  , 2 .654 .643 .639 .621 .604 .598 
d0 1 , 2  , 3 .605 .596 .595 .571 .557 .544 

o 1 , 2  , 3 .723 .714 .705 .698 .683 .674 
CO 

II 1 , 1  , 1 .835 .822 .825 .816 .794 .796 o a 2   . 2  , 2 .725 .715 .712 .700 .^85 .681 

o m 1 2 4 .805 .798 .789 .788 .776 .767 
"o a 1 1 2 .874 .865 .861 .860 .845 .841 

o o 1   , 1  , 2 .936 .931 .929 .929 .920 .918 
II 
O 2   , 3 , 5 .866 .861 .858 .855 .848 .844 
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The values for the lower confidence bound obtained by the LR 

method for N > 200 which we computed did not differ by more than 

.002 from those tabled in volume II ref [2], while the ML bounds 

differed by about twice this amount. This small discrepancy was 

not thought sufficient to display. We point out that at every in- 

stance in table II, the LR method lies closer to the RL value than 

does the ML bound. 

5.  THE EMPIRIC DISTRIBUTION OF THE TOO STATISTICS 

The question about which of the LR or ML methods is the better 

in a given instance can only be answered by knowing whether the dis- 

tribution of h(p)  is closer to normality, than -2A(6 ) is "loser 

to a Chi-square distribution where 6  is that argument of p*(6) 

such that hp*(6) ■ h(7T). . More precisely, for a given h,  IT and 

2 
n,  is the distribution law of [(h(p)-h(TT) ]/a]  or -2A(6 )  closer 

to a Chi-square with one degree of freedom. In this form, the question 

can be answered by simulation with a computer. 

Select a monotone reliability function h of certain order m, 

the vector of true reliabilities TT ■ (TT. ,.,,,IT )  and the set of sample 
x m 

sizes    n ■ (nn,...,n ).      We now generate the binomial observations 
1 m 

x *  (x..,...^ )     where each    x      is binomial with parameters    ^   ,n.. 
i. m 2 J    J 

We now compute    p,      MTT) ,       h(p)    and 

j-l 

and then calculate 

m 
2, 

1U 

ö    =   ^ [^hCp^'p^/n 
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X - [(h(p)-h(7T)/ä]2. 

We also use the operator A to calculate p*(6 ) with 6      such that 
IT TT 

hp*(6  )  = h(iT),      and then 
IT 

Y - -2A(6  )  = 2N(p)  - 2Np*(6  ) 
TT r r 7T 

where    N   was defined  in  (2.2). 

All of the above steps are repeated to obtain a set of observations 

(X1,Yi)       for      i=l,...,K 

where K is in the thousands, and the frequency histograms and the 

2 
empiric cumulative are compared with x (1)  distribution. 

The results of two comparisons are now given:  Figure 5 shows how 

much closer the true distribution of Y is to Chi-square with one de- 

gree of freedom than X is when only 10 observations for each component 

are used. Figure 6 shows that for 20 observations both distributions 

lie closer but, especially in the tail, the distribution of Y is 

closer to its asymptotic distribution. 
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Figure 5 

8 10 

The empiric distributions of    X,    using the ML method, 
and of    Y    using the LR method based  on 2000 observa- 
tions and compared with their asymptotic distribution 
for 

n    = n-  = n.=  10,       TT    =  TT    =  TT     =   .7 

h(p)   =  p3[l-(l-p1)(l-p2)]   + (l-p3)p1p2 
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Figure 6 

The empiric  distributions of    X,     using the ML method, 
and of    Y    using the LR method based on 2000 observa- 
tions and  compared with  their asymptotic distribution 
for 

n    = n2 = n    = 20,       7T1  =  ^2  * ^S =   *7 

h(p)   -  p3[l-(l-p1)(l-p2)]  +  (l-p3)p1p2 
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